Selasa, 15 Januari 2013

Active wheel shutters show Ford’s aero focus for 2015 F-150

Image: FordAtlas wheel shutters.jpg
Ford's new active wheel shutters in the closed (left) and open positions on the Atlas concept pickup.
Ford’s Atlas concept pickup, unveiled Jan. 15 at the 2013 North American International Auto Show in Detroit, provides a glimpse at some key fuel-efficiency technologies engineers are readying for the 2015 F-150.
Besides the shift to high aluminum content in the front end and cab, aimed at reducing the 2015 trucks’ curb weight by up to 700 lb (317 kg) versus the current F-150, and a next-generation EcoBoost powertrain featuring auto stop-start, Ford is putting a serious focus on reducing aerodynamic drag, said Raj Nair, Group Vice President of Global Product Development.
The Atlas shows a few of the results of “our extensive aero development” on the next-generation pickup, Nair told AEI.
An unexpected feature on the Atlas is active wheel shutters. The shutters are in at-rest position behind the wheel spokes when the vehicle is stationary and at up to moderate road speeds. As vehicle velocity increases to above 60 mph (97 km/h), its wheel-speed sensors signal a dedicated battery that powers the shutters. They deploy in a fan-like pattern (think of a Chinese fan being opened), closing off the openings between the wheel spokes and thus enabling smooth airflow across the wheels.
Active grille shutters and an automatic-deploying active front air dam work in conjunction with the active wheel shutters, Nair said. The Atlas concept truck also features power running boards that tuck in close against the truck’s body at speed, also helping reduce drag.
Ford’s simulations and early testing indicate the aero package as shown on Atlas is capable of providing a fuel-efficiency gain of more than 2 mpg (0.85 km/L) at highway speeds without diminishing towing or hauling capability. Full-line automakers Ford will have to improve their light-duty trucks’ fuel economy to approximately 32 mpg to comply with the new U.S. CAFE regulations that require a 54.5-mpg fleet average by 2025.
The 2015 F-150 also is expected to feature a 10-speed planetary automatic transmission, currently under development, according to Ford and supplier engineering sources. As previously reported by AEI, Ford and General Motors are in discussions on sharing advanced transmission technology as they have done with the highly-successful six-speed transaxle program.
Other technologies revealed on Atlas that have potential for the 2015 production truck include a 360° point-of-view camera that provides the driver a “bird’s-eye” view of the vehicle; driver-controlled trailer-backup assist; dynamic trailer-hitch assist that helps line up the hitch with the trailer coupler; a dual-purpose tailgate step/cargo cradle; and LED headlamps and taillamps.

Schaeffler fuel-smart concept vehicle to employ several technologies developed in North America

Image: Schaeffler All-Wheel Drive Disconnect Clutch (AWD Disconnect).jpg
Schaeffler's all-wheel-drive disconnect clutch will be a key technology on its upcoming demonstration vehicle.
In the coming weeks, technical specialists will equip a MY2013 Ford Escape with several fuel-smart innovations from Schaeffler, including its thermal-management module, AWD disconnect clutch, permanently engaged starter/generator, and latching valve. The latter three technologies were conceived and developed in North America.
“We think we’re under $40 per percent of fuel-economy improvement,” Jeff Hemphill, Vice President and Chief Technical Officer for Schaeffler Group North America, said in an interview with SAE International Magazines at NAIAS.
The thermal-management module to be fitted on the vehicle demonstrator (called Efficient Future Mobility North America) will be similar to the Schaeffler unit used by Audi in some production vehicles.
“But this version won’t have quite as much functionality,” Hemphill said about the module that allows the optimum engine temperature to be reached in the shortest time possible and allows temperature balance to be precisely controlled.
Integration of a thermal-management module can provide a 1% reduction in fuel consumption for city and highway driving.
Schaeffler’s AWD disconnect clutch, which decouples the unused drive axle from the drivetrain depending on the driving situation, can generate fuel savings of up to 2% in city driving and up to 6% in highway driving. The permanently engaged starter/generator with a wrap-spring one-way clutch can provide up to 6% fuel savings in city traffic.
The AWD disconnect clutch, the permanently engaged starter/generator, and the latching valve are all second-generation, under-development technologies. “These technologies could start production development later this year [and] enter production in the 2017 model year based on their maturity,” said Hemphill.
Schaeffler’s SUV demonstrator is expected to be ready for ride-and-drive evaluations in the summer of 2013.
According to Hemphill, the initial demonstration vehicle with its conventional powertrain and fuel-smart Schaeffler technologies is designed to meet CAFE standards for 2020. The company's follow-up demonstrator vehicle will add hybrid systems, with the goal of fulfilling CAFE requirements for 2025.

Electronics diverge in engineering Ford's hybrid C-Max and plug-in Energy

Image: C-Max PHEV pack.jpg
Large cell compartment for plug-in holds electronic modules, which are (1) battery temperature sensor; (2) junction box; (3) battery energy controller; (4) DC-DC converter controller; (5) secondary on-board diagnostic module.
Turning a hybrid electric vehicle (HEV) into a plug-in hybrid (PHEV) is more than adding cells to a battery pack, reflashing the controller, and installing a charger. The 2013 Ford C-Max and C-Max Energi are examples of what it takes to develop conventional hybrid and plug-in versions of the same vehicle—that is, many specific parts, software, and validation.
Both cars have lithium-ion (nickel-manganese-cobalt oxide) cells, which are chemically very similar. But those in the plug-in C-Max Energi, which has a 21-mi (34-km) EV range, have thicker electrodes and store more energy.
Why wouldn’t the C-Max conventional HEV have the same electrode thickness? Because thinner electrodes have less impedance, so the cells (of which there also are fewer) can deliver electric power faster. HEV batteries are a power source for acceleration assist, only minimal EV operation.

Designing for dual function

PHEV batteries, however, primarily are an energy source and, for EV operation, must be able to discharge deeply and take repeated recharge cycles over many years. But once EV energy is depleted, plug-in cells also must function in HEV mode. So electrodes’ design and other aspects of energy cells are a balancing act.
The prototype Prius PHEV evaluated the idea of a pair of cell packs: one type, larger for plug-in EV operation, the other (smaller) engineered for hybrid mode when the larger one's capacity was depleted. But the production model has one pack doing double-duty and controller software to optimize each function. That's the approach all other makes including Energi also have taken.
The “full” or conventional HEV version of the C-Max has 76 of the power cells wired in series, rated at 1.4 kWh. The plug-in Energi has 84 of the energy type in series, rated at 7.6 kWh. The plug-in uses 6.5 kWh for EV range and allows a residual of 1.1 kWh for HEV operation.
The physical size of the Energi PHEV pack, of course, is much greater. The HEV cells are each 120 x 85 x 13 mm (4.72 x 3.35 x 0.51 in); the Energi's are 148 x 91 x 26 mm (5.83 x 3.58 x 1.02 in). And the Energi pack has higher peak voltage (361 vs. 327, during regenerative braking). There's comparable HEV capacity for such operations as idle stop/restart, Ford engineers said.

Battery temperature controls

Battery temperatures are important factors for PHEV range, cell life, and performance. According to Gilbert Portalatin, Ford's Chief Program Engineer, Electrified Powertrain Programs and Integration, tests are run at extremes of -35ºC (-30ºF) and 82ºC (180ºF).
EVs such as Ford's Focus and the Chevrolet Spark variants, and even the plug-in Chevy Volt (all with much higher-capacity battery packs), have an active electric-pump-driven heating and cooling system using liquid coolant and siamesed in a heat exchanger with the vehicle HVAC. The object is to keep pack temperatures within 0-30°C (32-88°F), a protective range for fast recharging systems.
C-Max and Energi employ only fan-driven air-heating/cooling systems, relying on a sensor to monitor battery compartment temperatures. The Energi employs control strategies to direct cell temperatures to within 0-45ºC/32-113ºF for maximum EV driving range.
If the battery pack temperature is lower, the Energi will operate in EV at reduced power until the cells warm up during normal cycling of electricity between generator and battery pack, from drive operation and regeneration. There also may be heat provided by airflow through ductwork from the cabin if the climate control is in the heating mode.
There certainly will be heated air blown into the battery compartment from the cabin if the Energi's engine is started.  This occurs when the defroster is turned on or if the weather is extremely cold (the 2013 Chevy Volt also may employ a similar engine-start algorithm for battery pack heating in extreme cold).
For hot weather, the C-Max fan draws in what will be cooled cabin air provided by the vehicle A/C. During Energi-recharging, the fan draws in outside air, which even in hot weather is likely to be cooler than the cabin of a parked car in a hot soak. The Energi also will have a preconditioning mode using A/C for cabin cooling during plug-in, enabled through the Sync or MyFord Touch modules.
Ford has seen no durability problem with its battery pack from hot soak itself, Portalatin told AEI. So long as the vehicle is parked, peak temperatures in the battery compartment don’t affect battery capacity or longevity. Once the Energi is in use and the A/C is turned on (which can be assumed in very hot weather), pack temperatures quickly lower to an acceptable level.
This approach contrasts with the pre-2010 Ford Escape HEV, which used nickel-metal hydride batteries susceptible to deterioration if operating temperatures exceeded 140ºF (60ºC). It employed a second, rear HVAC system with an evaporator and a refrigerant flow control circuit that would chill the fan-driven airflow to the battery pack.

Innovative algorithm

In addition, C-Max Energi has algorithms that can adjust the EV range for the driver’s chosen route or operating choices, one of which is particularly innovative.
It can recognize a familiar route that is very close to the maximum EV range of the vehicle and do “smart discharge.” Using GPS from Sync to determine location along the known route, the system controls power output to extend range without changing the maximum percentage of discharge. This may make it possible for the car to reach its destination without gasoline engine operation. Other algorithms, similar to those in competitive PHEVs, permit the driver to choose when to use plug-in power, including reserving it, such as for lower-speed urban operation.
Ford limits the Energi to a 3.3 kW charge rate with a Level 2 (208-240-volt) system, which is part of the thermal balance with the protection from air cooling. The small battery pack takes just 2.5 hours for full recharge. By comparison, the Focus EV, with its active liquid cooling, accepts a Level 2 charge at a 6.6 kW rate.
Motor electronics for all full and plug-in hybrids rely on liquid cooling, typically with a dedicated electric-pump circuit, under the hood.

The Ducati Dry Clutch and Its Distinctive Rattle


Just as you can tell when a Harley is somewhere in the vicinity by the distinctive rumble of its V-Twin, so can you tell when a Ducati has just pulled up next to you.Although many might think that the rattling sound coming from a Ducati is a sign that the bike is in dire need of a tune-up, the bike is in fact perfectly fine. What you are hearing is the signature sound of the Ducati dry clutch, which is music to the ears of many a Ducati enthusiast.

Dry vs. Wet Clutch

It may seem obvious to many of our readers, but let us remind you of the difference between wet and dry clutches. The wet clutch, which you’ll find on just about every bike, is bathed in oil and completely sealed off. Dry clutches, on the other hand, are totally free of oil and do not need to be sealed. Many dry clutches are exposed so that the spinning clutch plates are visible to any passerby.

Pros and Cons of a Dry Clutch

Since Ducati employs the dry clutch on most of their bikes, we’ll take a quick look at the pros and cons of such a set up.

Pros:

  1. Easy access for repairs. There is no need to drain the oil before removing the clutch cover if you need to service your clutch. This is especially important in racing where clutches are regularly burned out and need to be replaced immediately.
  2. The dry clutch does not share oil with the rest of the engine and thus any debris from disintegrating clutch plates will not harm engine internals.
  3. Submerging a clutch in oil creates drag which will diminish the engine’s horsepower; it might not reduce the horsepower by much, but every little bit counts on the track.
  4. Heat generated by the clutch plates does not heat up the engine’s oil, which is especially important for bikes in which oil is used in the cooling system.

Cons:

  1. Much louder, but this is a matter of preference.
  2. With an exposed dry clutch, the springs will eventually rust. This can be prevented by installing stainless steel springs.

Why Does Ducati Use Dry Clutches on Most of its Bikes?

As you’ve probably gathered from the above list, dry clutches are most useful on race machines. For that reason, many will argue that Ducati’s use of a dry clutch on street bikes is only for marketing purposes.
In the past, Ducati has claimed that they build all their bikes to racing specs and that means using a dry clutch. However, in recent years, Ducati has produced bikes whose specifications are more in line with the target audience.
Today, bikes such as the Ducati 848 and Monster 1100 Evo are equipped with a wet clutch for easier use.

Why The Ducati Dry Clutch Sounds Like Rocks in a Bucket

If you’re still wondering what exactly it is that makes the Ducati dry clutch sound like someone put marbles in it, here’s your answer. The sound you’re hearing is the clutch plates bouncing off of one another when the clutch is disengaged.You’ll hear this sound when a Ducati rolls up next to you at a stop sign and the rider has pulled in the clutch lever, freeing up the plates to knock into each other.
Without any oil surrounding the clutch pack to lubricate the plates, you get that distinctive sound of rocks in a bucket.
So next time someone pulls up next to you on a Ducati, you’ll know better than to yell to them that they should get their valves adjusted.

Senin, 24 Desember 2012

Delphi introduces plug-in telematics for aftermarket service

Image: Delphi Telematics Overview.jpg
Auto IQ uses a device that plugs into a vehicle’s OBD II connector. Vehicle data is transmitted to Delphi cloud servers, which identify service/maintenance needs, communicate with aftermarket parts suppliers, and via email or text message, the motorist.
The independent automotive service aftermarket holds a commanding share—nearly 72%—of the market, most of which is won when the vehicle warranty has expired. However, the drop in the number of car dealers during the recession, which should have given the independent a new opportunity, has been countered by OE telematics installations that establish dealer shop-to-car communication. The connectivity can deliver road service requests, send vehicle health reports, receive remote diagnostic reports, and schedule service appointments.
These are powerful weapons, enabling the dealer to create a seamless transition from the warranty period. But now the aftermarket is developing its telematics responses, and adding dealer-level service capabilities. Delphi Product and Service Solutions, in conjunction with aftermarket partners, unveiled its multipart system at the recent AAPEX Show during Automotive Aftermarket Industry Week in Las Vegas.
The overall system, called Auto IQ, features the Connected Car Telematics Solution (CCTS). This device plugs into the vehicle’s under-dash OBD II connector and, through a cellular modem or a Bluetooth connection to a smartphone, communicates through the cloud with Delphi firewall-protected servers within a virtual private network.
Although the CCTS doesn’t have access to the OE external communications systems, Delphi does have the ability to use both generic and OE-enhanced OBD II data and special algorithms to derive the equivalent data it needs. This data, which includes vehicle mileages, is sent to the servers at preprogrammed intervals or when a real-time action occurs, such as logging of a diagnostic trouble code (DTC).
The CCTS is expected to be especially appealing to those driving cars that were not factory-equipped with telematics and also to the majority of motorists who choose to switch to the independent garage, whether they have an OE telematics system or not.

Identifies VIN for diagnostics  

The Delphi servers can identify the VIN (vehicle identification number) so therefore can produce make/model/year identification if a DTC is logged, decide if that indicates a specific repair part is likely to be needed, and transmit the data to servers in a designated aftermarket service network. CCTS similarly can determine from mileage and time data if maintenance is needed and also communicate that information to the servers in the aftermarket service chain. In both cases, it additionally would send out an email and/or text notification to the motorist. 
Further, by integration into a part supplier’s e-catalog, CCTS can get the parts number and ensure that the servicing shop has it or ready access to it. At the garage end, integration of CCTS into the shop management system also completes the network between a customer and his chosen garage, including scheduling of appointments and even road service. The plug-in device, as a result, likely would be installed by the garage and the tie-in subscription established with Delphi. The fee structure for the service has not been announced, but Delphi said it would be tailoring packages depending on such factors as the requested level of functionality.
The plug-in device was developed by Delphi in conjunction with Aftermarket Telematics Technologies (ATT), a software firm with which a relationship was established. ATT created what Delphi described as a series of interfaces that fit well into the independent aftermarket structure, specifically the communication between motorist, independent garage, and parts supplier. CCTS was named the first winner of the Aftermarket Telematics Challenge by the Automotive Aftermarket Industry Association. AAIA has been moving on several fronts to spur aftermarket competitiveness, also including diagnostics, access to OE service information and reprogramming, and rapid ordering and delivery of parts, through its eShop/"Shop of Tomorrow” program. The objective is to promote a network of equipment, software, and parts suppliers that are compatible with the open standards of the AAIA initiative.
Delphi also announced its mobile e-catalog, based on the online catalog for PCs but capable of automatic optimization for smartphone/tablet formats, including Apple (iPhone and iPad), Android, and Windows phones and tablets. It does not require downloading an app, just entering go.Delphi.com. If the technician knows the part number, he enters it and the part itself is shown. Or he can enter year, make, and model and get to the part number in three “touch/clicks.”

Supports widely used protocols

Delphi’s Auto IQ uses a PC platform with a vehicle communications interface (VCI) device (plugs into the OBD II connector at one end, the PC or a tablet at the other). It supports most automotive data bus, diagnostic, and reprogramming protocols, including SAE J2534 (“Pass-Thru”), SAE J1850, CCD (Chrysler Collision Detection), ISO 9141 and 15765, Keyword Protocol (KWP) 2000/ISO 14230, and General Motors UART (Universal Asynchronous Receiver/Transmitter) and CAN.
The VCI, supplied by Blue Streak Electronics, is capable of OE-level reprogramming via the SAE J2534 protocol.
At the independent garage service level, Auto IQ and the VCI also provide such OE functionality as access to repair information, enhanced diagnostic data, and bidirectional controls, of which there are thousands for GM, Chrysler, and Ford. It also can graph up to 16 data items, in color, on a PC or tablet screen.

ZF explores composites for lightweight truck-chassis design

Image: ZF composite 4-point link.jpg
ZF’s “study” of a four-point link made from glass-fiber-reinforced plastic reduces weight by approximately 11 kg (24 lb), or 25%, compared to the 46-kg (101-lb) standard cast component. The program’s target was to reduce weight by 30%, “so we have some more potential” through design optimization, said chassis development boss Holger Bublies. (Image by Ryan Gehm)
ZF is doing its part to help reduce emissions and improve the fuel efficiency of commercial vehicles, namely through its development of advanced transmission systems such as the new modular TraXon automatic transmission for trucks, which includes a hybrid module, as well as with other electrified driveline technologies. But as CEO Dr. Stefan Sommer noted at the IAA Commercial Vehicles Show in Hanover this fall, lightweight design is another major focus of the supplier’s development activities.
Along with optimized design, including the integration of functions for individual components, new materials for heavy-truck applications, particularly in the chassis, are leading ZF’s lightweight charge. One example on display at the IAA show was a “study” of a four-point link made from glass-fiber-reinforced plastic (GFRP) that reduces weight by approximately 11 kg (24 lb), or 25%, compared to the 46-kg (101-lb) standard cast component.
(See http://www.sae.org/mags/aei/7840 for coverage of the supplier’s use of composites in passenger-car chassis.)
“We have one four-point link in serial production for MAN. It is a cast part, and it’s nearly the same dimension, the same function. Our job was to look for more weight savings,” Holger Bublies, Head of Development for ZF’s Commercial Vehicle Chassis Modules business unit, explained to SAE Magazines. Given the weight-savings potential of composite materials, the investigation started there.
“We set out to answer, ‘Is it possible to use this material for this component?’ It is really a harsh function,” he said. The four-point link merges functions for longitudinal and lateral axle guidance as well as for active roll stabilization.
“With this function integration, you can have a solution without a separate stabilizer and stabilizer links; you can save about 50-60 kilos on one axle,” Bublies said.
Another target of the investigation was to examine production methods in an effort to reduce costs. For this prototype fiber-composite part, the process is more manual, but ZF is working on resin transfer molding (RTM) for serial production.
“In the truck business, you need to earn money with your truck. Weight savings is a big point, but cost is an even bigger point,” he said. This mentality explains the usage of glass-fiber reinforcement for the prototype part: “Carbon is a factor of 8 or 10 more expensive,” Bublies shared.
What is an acceptable increase in cost for a composite part to be competitive with an incumbent part? According to information Bublies has gathered, a cost increase of about €5-10/kg of weight reduction could tip the scales in favor of the lighter-weight material. The ZF project currently is still “a little bit higher” than that €10/kg bogey.
“At this really early stage, [the part and process] are not optimized,” he said. “Now after the test results, we have to validate our simulation models. We have to learn many things in this project because to design such a part with this material is a totally new thing. We think it’s possible to decrease weight another some kilos, and we are also working on production.”
Bublies’ hope is that eventually the GFRP four-point link will become a solution offered in truck OEMs’ “super efficiency” models.
“Of course today OEMs have lightweight vehicles, and this could be one more option for them,” he said. “Yes, we are a bit more expensive, but not as much as we thought at the beginning of the program.”
ZF currently has one workshop producing the composite part, and testing continues on the internal ZF program. (The supplier is not working with MAN on the project, Bublies said, but it has shared with the OEM some of the results thus far.)
“The whole technology—composites—is a big item in the ZF Group,” he said. “We have this central development center in Friedrichshafen, and they have their own experts that do this. So we are the business unit; we are the experts on the product, and we have at the central development center some experts for the material, for production, and then we have a joint team working on this program.”
He is not certain when the part will make it to series production, stating “not next year; maybe in five years or so.”

Biofuel opportunities and pitfalls

Image: Yeast.jpg
Neste Oil’s NExBTL renewable diesel technology starts by using yeast and fungi to convert sugars from waste and residue into microbial oil.
As nations grapple with emissions, oil-security, and energy-price matters, aggressive investment, regulation, and corporate involvement have propelled the alternative-fuels industry to commercial relevance. Alternative fuels today have a total capacity capable of replacing 4.8% of current oil capacity.
However, growth has slowed significantly. Since 2005, annual capacity growth has been roughly 22%; but growth through 2015 will be about 5% per year. As supply grows and logistical hurdles associated with feedstock and fuels increase, a new crop of technologies is emerging to add to the growing alternative-fuels space.
According to Lux Research, the world has capacity to produce 32.7 billion gal (124 billon L) of ethanol, 15.6 billion gal (60 billion L) of biodiesel, and 1.0 billion gal (4 billion L) of other alternative fuels today—4.8% of the 1023 billion gal (3872 billion L) conventional market.
Flawed though they are, biodiesel and ethanol account for 98% of all biofuels in the world. But because of those flaws—technical and logistical issues, fuel blend limits, and the nagging food vs. fuel debate—ethanol and biodiesel capacity will grow relatively slowly for the next five years, with ethanol growing at 5.6% annually and biodiesel 1.9%. Even with their slow growth, ethanol and biodiesel will remain the dominant fuels in 2015, accounting for 96% of total alternative fuels. Then they will start to cede ground to the faster-growing renewable diesel, which is the brightest crayon in the box of other fuels.
Ethanol is the most geographically consolidated biofuel, with Brazil and the U.S. accounting for 76% of global ethanol capacity thanks to massive supplies of sugarcane and corn, respectively, and favorable government support. Europe represents a meager 9.3% of global ethanol capacity, and China dominates the Asia-Pacific region in ethanol capacity today. North America and South America have a combined 4.2 billion gal (16 billion L) of biodiesel capacity installed today, representing 29% of the global biodiesel capacity. Europe dominates biodiesel capacity with 46% of the global total, or 6.6 billion gal (25 billion L).

Public sector support

Alternative transportation fuels stand where they do today thanks in large part to aggressive government targets of alternative-fuels blending, and the subsidies and loan guarantees to help reach that goal. These policies—and their level of success—vary from region to region and even city to city, because the entire alternative-fuels ecosystem is hyperlocal. Regulators hope to help alternative-fuels developers compete with the economics of oil by subsidizing crops and fuel blends, minimizing processing and logistical costs, and putting other rules in place that capitalize on local feedstocks to produce fuels for local markets.
Government support for biofuels comes in many flavors, with mandates, tax credits, tariffs, and loans the most common. Overarching mandates such as the Renewable Fuel Standard (RFS) in the U.S. are constantly under the microscope; this is currently the case due to high corn prices and unavailable advanced biofuels. Loan guarantees, similarly, are getting their fair share of scrutiny—the “No More Solyndras” Act to limit U.S. Department of Energy loan guarantees is currently heading to the Senate.
Throughout the world, debt crises and sagging economics are forcing regulators to slash budgets, and fuel incentives are often on the chopping block. Although pockets of government support exist today, investors and producers should focus on economics first, and look to government support later.

Technical innovation

Generally speaking, yeast ferment corn- and sugarcane-based sugars into ethanol, and vegetable oils are catalytically converted into biodiesel. Biofuel companies, for the most part, capitalize on the “hyperlocal” nature of this industry—sourcing feedstock, producing fuel, and selling that fuel all in one region. As the aforementioned food crop economic and regulatory issues push fuel producers onto second-generation feedstocks, cellulosic ethanol producers are emerging with a range of different conversion technologies to economically extract sugar from cellulose. This conversion has been historically very expensive, but as costs decline producers are looking to capitalize on vastly cheaper and more abundant agricultural and forestry waste as the biofuel feedstock of the future.
Cellulosic fuel efforts will still be nascent in 2015, so that fuel type will remain a small percentage of biofuels even in the most optimistic scenarios. Even if all announced facilities are built on time, cellulosic ethanol would represent only 1% of total ethanol capacity in the world in 2015. Besides ethanol, cellulosic sugars will be converted into butanol, diesel, plastics, and other chemicals.
Additionally, waste feedstocks such as sludge, municipal waste, and waste vegetable oil are becoming a more attractive option, while the ultimate next-generation alternative-fuels feedstock, algae, mostly remains behind scale and is often used to produce omega-3’s, not fuels.
In addition to tapping into new feedstocks, companies are making new types of fuels; renewable diesel by Neste Oil is leading the way. (Renewable diesel is more similar to regular diesel than is biodiesel and can be blended into regular diesel at higher concentrations.)
Many next-generation fuel producers are inherently flexible, as producers can straddle the line between making fuels and chemicals. Selling into chemical markets can help producers get product online early, as those markets typically have higher-value products and an easier road to market. Gevo, for example, is producing bio-based isobutanol, which can be blended into gasoline or converted to diesel or jet fuel, though the company is targeting the solvent and chemicals markets (for rubber and PET, among others). Similarly, Virent’s aromatics platform can produce renewable gasoline, and also paraxylene for PET.

The customers

Large oil companies such as Shell and BP are not the only corporations driving this next wave of biofuels forward; OEMs such as General Motors and Volkswagen have several relationships with start-up biofuel developers including cellulosic ethanol hopefuls Mascoma and Coskata and renewable diesel producers Solazyme and Amyris. While these fuels are rather easy to drop into the existing fuel supply, other automakers are targeting novel fuels that would require a larger overhaul on infrastructure.
For example, Swedish DME maker Chemrec is part of a BioDME consortium that includes Haldor Topsøe, Total, Volvo Trucks, and Delphi. Through this collaboration, Haldor Topsøe will provide the technology to convert syngas to DME for use in Volvo’s DME-compatible trucks. The DME is transported to four fueling stations run by Preem and is used to power 10 Volvo trucks. Volvo reported positive results from the tests thus far, with the trucks covering over 450,000 km (280,000 mi) and experiencing a noticeable reduction in emissions.
While DME has an uphill battle to penetrate the passenger vehicle market due to infrastructure needs, this fuel type may find an easier path to market in truck and off-highway applications. Many delivery trucks and construction vehicles return to the same base every day and would require only one central fueling station, rather than multiple public stations.
Unlike other transportation applications in which the end user is purchasing the fuels, jet fuel purchasing is more centralized. With centralized purchasing, airlines are willing to invest in developing jet fuel opportunities, since jet fuel is such a large part of operating expenses. Both the aviation and off-highway industries present opportunities for developers to avoid some of the issues associated with fueling infrastructure that limit so many other alternative fuels.
This article was written for SAE Magazines by Andrew Soare, Analyst, Lux Research